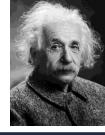
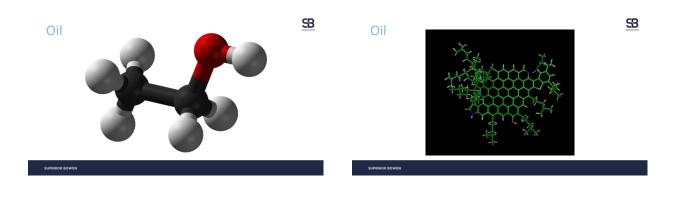
SB

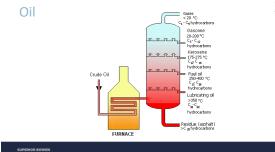

March 11, 2020

UNDERSTANDING THE USE OF REJUVENATORS Presented by: orant wollenhappt

Less Like

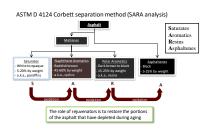
SUPERIOR BOWEN


\$



SB

58


SB

Asphalt Binder Yield From Crude Sources (Not All Binders are Same, Binder Aging Will Vary)

Percent Asphalt Binder Content (Residual) versus Crude Sources					
Source Residual					
Boscan, Venezuela	58				
Ca Valley, Kern River	66				
Ca Costal, Hondo	48				
Alaskan, North Slope	31				
Arabian, Heavy	27				
Nigeria, Light	1				

		Fra	ctional Product Yield fr Crude Sources	om
	100%	Kerosene		
	90% -	Light Gas Cil	Gascère	Genative
	80% -			
	70% -	Heavy Gas Cit	Kerssere	
	60% -		Light Case Cit	Kerstere
Neccell	50% -			
2	40% -		Heavy Case Cit	Lists Gam CH
	30%	Brumer Recipuls		
	20%	Rearies Recolumn		
			Roumen Residualis	Heavy Gas Cit
	10% -		ittumen Residu	
	0%	Boscan Venezuela	Arabian Heavy	Nigerian Light

Asphalt Chemistry Basics

http://www.tricorrefining.com/cyclogen.php

Why Use Rejuvenators?

Basics of Asphalt Binder Aging – Short Term

Short Term

- Environment Mixing, silo storage, transportation and laying processes due to exposure to high temperatures
- Causes
 - Oxidation of the thin binder film in oxygen rich environments

 - Evaporation of low molecular weight volatile fractions (volatilization) · Absorption of oily constituents, resins and asphaltenes by
 - aggregates.

From: Zaumanis et. al., Evaluation of different recycling agents for restoring age asphalt binder and performance of 100 % recycled asphalt, REEM 2014

Basics of Asphalt Binder Aging - Long Term

Long Term

 Environment In service within pavement

- Aging increased closer to surface
- Causes

 - Causes
 Oxidation because of constant supply of fresh air
 Polymerization (i.e., or fursh for surface layers
 Photo-oxidation (i.e., uV light) for surface layers
 Thiotoropy (i.e., steric hardening) due to the formulation of a structure within asphalt binder over a
 long period
 Occurs with pavements with little to no traffic (e.g., left turn only lanes).

From: Zaumaniset. al., Evaluation of different recycling agents for restoring aged asshalt binder and performance of 200 % recycled asphalt. BUEM 2024

Binder Composition Change During Aging

What Happens to Binder During Aging (Oxidation)? Asphalt is comprised of 1) asphaltenes and 2) maltenes

Result:

- Asphaltenes
 (Viscosity building blocks, provide stiffness to binder) Maltenes
 - (Disperses the asphaltenes, provide flexibility to binder) Resins
 - Turns to asphaltenes after oxidation
 - Oils
 - Turns to asphaltenes and resins after oxidation
- As binder ages 1) the ratio of asphaltenes to maltenes increases, 2) asphaltenes flocculation increases, 3) and the binder stiffness increases.

We May Have a Problem

SB

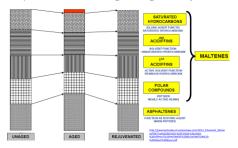
T5RC with 20% RAP	PG78-20
T5RC with 27%RAP/3% RAS	PG90-12

Recycling Agents

SUPERIOR BOWEN

Softening Agents

- Asphalt flux oils (generally blended with bitumen to reduce the viscosity).
 Lube stock (a fraction of crude oil that has a
- viscosity similar to lube oils). Lubricating or crack case oil (usually highly
- aliphatic).
- Slurry oil (bottoms from the catalytic cracking process).


22

Rejuvenator vs Recycling Agent – The Differences

Rejuvenator	Softening Agent)
Improve the low temperature PG grade and increase crack resistance in the HMA	Also capable of reducing the viscosity and improving the low temperature properties of the high RAP binder.
Improve workability/compaction of the RAP mix design	
Restore the aromatic resins to the high RAP asphalt binder that were lost due to oxidative field aging	A recycling agent does not add the aromatic resins to balance the properties of the high RAP binder and repair the oxidative aging
Do not cause continuous age softening of the RAP asphalt binder which could lead to increased rutting potential	Without the aromaticity restored, the high RAP mix design will exhibit premature rutting due to continued age softening of the RAP binder
Increase aromatic resins lost during oxidation	
Reduce the high temperature Performance Grade (PG)	

ling 0811.pdf

Asphalt Binder – Unaged / Aged / Rejuvenated

Types of Rejuvenators

- Aromatic Oils
- Fuels
- Tall
- Bio-based
- Pig Sh*T
- Waste Products
- REOB

What to Look For

- Safety
- Environmental
- Ease of Use
- Performance
- Cost

RIOR BOWE

SB

SB

Devastatingly Deadly to Aquatic Life

SB

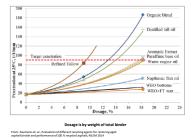
Rejuvenator Dosage Types

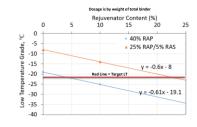
- Percent of the following:
 - Recycle Recycled binder
 - Virgin binderTotal binder
- Total mix
- How do they compare? Different dosage types can cause confusion!

53

Dosage Type Comparison - Rejuvenator Economic Analysis Tool

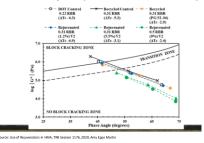
Rejuvenator Dosage Type	Cost Comparison	INSTRUCTIONS
Parameter	Value	Spreadsheet is designed to calculate the rejuvenator cost per
RAP, %	40.0	ton based on the user inputs (yellow fill) of the following
Binder in RAP, %	5.0	1. RAP, % (RAP as a % of the total mix) 2. Binder in RAP, %
Mix RAP Binder, %	2.0	3. Total Binder, %
Total Binder, %	5.0	4. Chosen Dosage Type Options:
Virgin Binder, %	3.0	- Added as a percent of RAP mass = %RAPMass
Chosen Dosage Type	%VirginBinder	- Added as a percent of the Mix RAP Binder mass or binder
Dosage (%) for Chosen Dosage Type	6.00	contribution in mix from RAP = %MixRAPBinder
Rejuvenator Ib / Mix Ton	3.60	 Added as a percent of the mix virgin binder mass =
Cost per Rejuvenator per lb	\$ 1.00	
Rejuvenator Cost per Mix Ton	\$ 3.60	Added as a percent of the mix total binder mass = WTotalBinder
Dosage Types	Dosage Rate Equiv. 9	- Added as a percent of the mix total mass = %TotalMix
%RAPMass	0.45	5. Reluvenator cost per lb.
%MixRAPBinder	9.00	
%VirginBinder	6.00	Spreadsheet calculates the cost per ton for the chosen dosage
%TotalBinder	3.60	type and also provides the equivalent dosage rate for the oth
%TotalMix	0.18	dosage type options for reference.


How to Get the Sauce on the Rocks

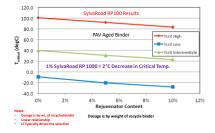


53

Dosage Determination by Target Penetration



Dosage Determination by Target PG Low Temperature



SB

G-R Black Space (WI PG 58-28, PG 52-34)

Dosage Determination by Target PG Low, Int., High Temperature

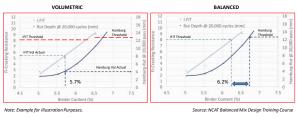
You Have to Start Somewhere

PERIOR BOWEN

	orig	RTFO	PAV	RTFO Effect	PAV Effect	Total Age Effect
Virgin 64-22 8-30-12	-30.39	-29.52	-24.86	3%	16%	18%
Virgin w/ 5% Product A	-34.24	-32.41	-29.11	5%	10%	15%
Virgin w/ 8% Product A	-36.23	-35.01	-31.51	3%	10%	13%
Virgin w/ 10% Product A	-38.32	-36.17	-32.41	6%	10%	15%
Virgin w/ 5% Product B	-34.90	-33.22	-30.11	5%	9%	14%
Virgin w/ 8% Product B	-37.10	-35.31	-32.68	5%	7%	12%
Virgin w/ 10% Product B	-39.12	-36.79	-34.76	6%	6%	11%
Virgin w/ 5% Product C	-36.69	-34.54	-31.89	6%	8%	13%
Virgin w/ 8% Product C	-40.73	-36.92	-34.77	9%	6%	15%
Virgin w/ 10% Product C	-45.29	-37.85	-35.91	16%	5%	21%

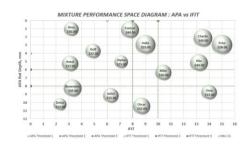
Don't Call in a Comeback

T5RC with 0% RAPPG78-20T5RC with 27% RAP/3% RASPG90-12



T5RC WITH 27%RAP/3% RAS PG75-23 T5RC WITH 25%RAP/5% RAS PG81-22

Volumetric Mix Design vs Balanced Mix Design (Example)


Design					
-	Virgin AC Grade	PG 52-34	PG 52-34	PG 58-28	PG 58-21
	FRAP, %	40	40	60	60
	Targeted Total AC, %	4.8	4.8	4.8	4.8
5	As Measured Total AC. %	4.6	4.7	4.6	4.4
Detri	Added AC, %	2.7	2.7	1.7	1.7
Volumetrics	Binder Replacement, %	44%	44%	65%	65%
	Additive, %	0.0	0.0	0.2	0.2
	Air Voids, %	2.7	4.4	2.0	2.4
	TSR	N/A	91.3	N/A	99.2
Performance Testing	SIP, # passes	11,691	19,894	11,840	9,321
	Rut depth @10,000 passes, mm	7.1	3.3	6.0	7.6
	SCB FI	4.4	1.6	2.7	3.2
	DCT Energy, J/m ²	347	324	446	385
	Continuous PG	72.1-26.1	69.2-28.0	70.8-27.3	70.8-29.3
	Delta Tc, 'C	-6.6	-5.3	-2.8	-2.0

SB

Obligatory Data Page

	Mix Type					
	190 C	125 SMA I-435	095 SMA I-435	T5 City Overlay 40R	T5 City Overlay 60R	
Virgin AC PG	64-22	64V-22 GTR	64V-22 GTR	52-34	58-28	
Virgin AC %	3.50%	6.50%	6.00%	2.60%	1.50%	
Additive %	0.00%	0.00%	0.00%	0.00%	0.20%	
Recycle AC %	1.50%	0.00%	0.00%	2.00%	2.90%	
Total AC %	5.00%	6.50%	6.00%	4.60%	4.60%	
Air Voids	3.00%	4.80%	4.80%	2.70%	2.00%	
Rut Depth (mm)	3.19	4.13	6.88	12	10	
Stripping Inflection	NA	17,761	11,271	10,211	9,086	
Passes	20,000	20,000	20,000	12,662	16,112	
Flexibility Index	< 1	10	3	3	3	
DCT (J/m2)	320	714	626	347	446	
Continuous Grade	NA	NA	NA	72.1-26.1	70.8-27.3	

SUPERIOR BOWEN

53

Rejuvenator Economics (Per Ton Basis)

- 1. Raw cost of rejuvenator product
- 2. Dosage required (must compare on same baseline)
- 3. Additional equipment cost for addition
- 4. Recycle used (relative to control)
- 5. Additional benefits from rejuvenator (e.g., WMA, anti-strip, etc.)

Summary

- 1. Rejuvenators can potentially provide a more crack resistance mixture while maintaining the rut resistance of the mixture.
- Rejuvenator use should be evaluated via laboratory performance testing to help establish optimum dosage and performance characteristics.
- Decision to utilize rejuvenators should be based on the anticipated benefit (e.g., performance gains) versus the cost associated with the rejuvenator use.

Resources

- AAPT
- NCAT
- NAPA, APA, SAPAs
- NCHRP 09-58 Effects of Recycling Agents.....
- NCHRP 20-07/Task 406 Balanced Mix Design
- Manchester Pavement Solutions

58

Contact

Grant Wollenhaupt Chief Commercial Officer XBE Grant-Wollenhaupt@x-b-e.com

SUPERIOR BOWEN